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Abstract: An addition of benzaldehyde to an ethereal solution of w-butyldimethylsilyldibromo 
methyllithium provided or-bromo-a-silyl ketone. Further treatment of the a-bmmoa-silyl ketone with 
butyllithium afforded enolate which provided g-hydroxya-silyl ketone upon treatment with aldehyde in 
ether. The enolate gave a,&unsaturated ketone or monosilyl ether of 2-acyl- 1.5diol in THF instead of 
ether. 

We have reported! that treatment of a THF solution of tert-butyldimethylsilyldihalomethyllithum with 

aldehyde (RICHO) followed by an addition of second aldehyde (R2CHO) and HMPA gave the corresponding 

monosilyl ether of 1,3-dial (RfCH(OSiMe2-r-Bu)CX2CH(OH)R2). The use of ether instead of THF as a 

solvent has proved to change the reaction pathway dramatically and treatment of tert-butyldimethylsilyl- 

dibromomethyllithium (1) with aldehyde (RICHO) gave a-bromo-a-silyl ketone (RI COCHBrSiMeq-t-Bu). 

We wish to report here a synthetic method for formation of (Q-a&unsaturated ketones and 2-acyl-1 ,fdiol 

monosilyl ether in one-pot based on organosilicon chemistry which invotves I,Zmigration of hydrogen 

followed by 1,3- rearrangement of silicon. 

Treatment of tert-butyldimethyIsilyldibromomethyllithium (l), derived from r-BuMe2SiCHBr2 and 

lithium diisopropylamide, with benznldehyde ina at -78 “C provided a-bromo-a-silyl ketone 3a2 in 76% 

yield upon warming the reaction mixture to room temperature. The representative results are shown in Scheme 

1. The reaction obviously involves initial formation of adducts 2 followed by I ,Zmigration of hydroge&4 

giving a-bromo-a-silyl ketones. 
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RI= Ph 3a : 76% 

Rl = PhCH=CH 3c : 62% 

RI = n-C6H13 3e : 42% 

R’ = c-C6Ht 1 3b : 72% 

Rt = r-CqHg 3d : 49% 
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An addition of butyllithium to an ether or a THF solution of a-bromo-a-silyl ketone 3 at -78 “C’ caused 

lithium-bromine exchange to afford an enolate q5 which was quenched with diluted hydrochloric acid to give a- 

silyl ketone (R1COCH2SiMe2-r-Bu) quantitutivety. Again, reaction solvent played a critical role in the reaction 

of enolate 4 with aldehydes (Scheme 2). The enolate 4 was treated with aldehyde in ether and quenching the 

reaction with acetic auid yielded j3-hydroxy-a-silyl ketone 6, which was contaminated by (&-a& 

unsaturated ketone 8 and monosilyl ether of 2-acyl-1,3-diol 9 (6:8:9 = 7:1: I).6 An addition of HMPA to 5 

before quenching provided only (E)-a$-unsaturated ketone 8 with high stereoselectivity in good yields. Four 

examples are shown below. In contrast, the reaction of enolate 4 in THF with aldehyde (1.1 equiv) provided 

(E)-a$-unsaturated ketone 8 directly without an addition of HMPA. For instance, the enolate 4a (Rl = Ph) 

or 4b (R1 = c-C&H1 1) gave a&unsaturated ketone 88 or 8e (R2 = nC4H9) in 84% or 79% yield, 

respectively, upon treatment with benzaldehyde or pentanal. An addition of an excess of PhCHO to 4a gave 

monosilyl ether of 2-acyl- 1,3-diol9a (R ’ = R2 = Ph),7 derived from two molecules of aldehyde, in addition to 

cc&unsaturated ketone 8a. The yield of 9s increased with increase of an amount of benzaldehyde employed 

and the use of four molar equivalents of benzaldehyde per one mol of enolate gave a mixture of 8a and 9a in 

23% and 73% yields, respectively. Thus, the 1,3-rearrangement* of silyl group (5+7) takes place readily in 

THF and an addition of 7 to the second molecule of aldehyde competes with elimination of t-BuMe2SiOLi to 

give a$-unsaturated ketone. Stereoselective formation of (E)-a&unsaturated ketone could be explained by 

relative stabilities of the rotamer A of the intermediate enolate 7, which is more stable than B (Scheme 3).8 
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Scheme 3 

Favored 
A 
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Then we turned out our attention toward one-pot synthesis of a$-unsaturated ketone starting from terr- 

butyldimethylsilyldibromomethyllithium (1). An addition of aldehyde to ethereal solution of 1 gave a-bromo- 

a-silyl ketone which was further converted into enolate with base and then treated with second aldehyde and 

successively with HMPA to afford a$-unsaturated ketone. A typical experiment is as follows. Benzaldehyde 

(1.2 mmol) was added to 1 (I .O mmol) in ether at -78 OC and the reaction mixture was warmed up to room 

temperature over 10 h to provide 3a. The reaction mixture was cooled to -78 “C and set-butyllithium (2.5 

mmol)9 was added. After the reaction mixture was stirred at -78 ‘C for 1 h, the second aldehyde (PhCHO or 

heptanal, 3.0 mmol) was added. The mixture was stirred for another 30 min and then HMPA (2.5 mmol) was 

added. The resulting mixture was stirred at -78 OC for I h, then at 0 ‘C for IO min and Routed into sat. 

ammonium chloride. Extractive workup followed by silica-gel column chromatography gave a&unsaturated 
ketone %a or 8b in 59% or 57% yield, respectively (Scheme 4).JO 

Scheme 4 
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Sa: 59% 8b: 57% 8c: 56% 8d: 53% 
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